Evaluate
\frac{8-2\sqrt{2}}{7}\approx 0.738796125
Share
Copied to clipboard
\frac{4\left(\sqrt{2}-4\right)}{\left(\sqrt{2}+4\right)\left(\sqrt{2}-4\right)}
Rationalize the denominator of \frac{4}{\sqrt{2}+4} by multiplying numerator and denominator by \sqrt{2}-4.
\frac{4\left(\sqrt{2}-4\right)}{\left(\sqrt{2}\right)^{2}-4^{2}}
Consider \left(\sqrt{2}+4\right)\left(\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}-4\right)}{2-16}
Square \sqrt{2}. Square 4.
\frac{4\left(\sqrt{2}-4\right)}{-14}
Subtract 16 from 2 to get -14.
-\frac{2}{7}\left(\sqrt{2}-4\right)
Divide 4\left(\sqrt{2}-4\right) by -14 to get -\frac{2}{7}\left(\sqrt{2}-4\right).
-\frac{2}{7}\sqrt{2}-\frac{2}{7}\left(-4\right)
Use the distributive property to multiply -\frac{2}{7} by \sqrt{2}-4.
-\frac{2}{7}\sqrt{2}+\frac{-2\left(-4\right)}{7}
Express -\frac{2}{7}\left(-4\right) as a single fraction.
-\frac{2}{7}\sqrt{2}+\frac{8}{7}
Multiply -2 and -4 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}