Solve for y
y=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
3\left(3y+1\right)=3y-1
Variable y cannot be equal to \frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3y-1\right), the least common multiple of 3y-1,3.
9y+3=3y-1
Use the distributive property to multiply 3 by 3y+1.
9y+3-3y=-1
Subtract 3y from both sides.
6y+3=-1
Combine 9y and -3y to get 6y.
6y=-1-3
Subtract 3 from both sides.
6y=-4
Subtract 3 from -1 to get -4.
y=\frac{-4}{6}
Divide both sides by 6.
y=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}