Evaluate
-\frac{x^{2}-y^{2}}{x\left(2x-y\right)}
Factor
-\frac{\left(x-y\right)\left(x+y\right)}{x\left(2x-y\right)}
Share
Copied to clipboard
\frac{3y}{2\left(2x-y\right)}-\frac{y}{x}-\frac{1}{2}
Factor 4x-2y.
\frac{3yx}{2x\left(2x-y\right)}-\frac{y\times 2\left(2x-y\right)}{2x\left(2x-y\right)}-\frac{1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(2x-y\right) and x is 2x\left(2x-y\right). Multiply \frac{3y}{2\left(2x-y\right)} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{2\left(2x-y\right)}{2\left(2x-y\right)}.
\frac{3yx-y\times 2\left(2x-y\right)}{2x\left(2x-y\right)}-\frac{1}{2}
Since \frac{3yx}{2x\left(2x-y\right)} and \frac{y\times 2\left(2x-y\right)}{2x\left(2x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3yx-4yx+2y^{2}}{2x\left(2x-y\right)}-\frac{1}{2}
Do the multiplications in 3yx-y\times 2\left(2x-y\right).
\frac{-yx+2y^{2}}{2x\left(2x-y\right)}-\frac{1}{2}
Combine like terms in 3yx-4yx+2y^{2}.
\frac{-yx+2y^{2}}{2x\left(2x-y\right)}-\frac{x\left(2x-y\right)}{2x\left(2x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(2x-y\right) and 2 is 2x\left(2x-y\right). Multiply \frac{1}{2} times \frac{x\left(2x-y\right)}{x\left(2x-y\right)}.
\frac{-yx+2y^{2}-x\left(2x-y\right)}{2x\left(2x-y\right)}
Since \frac{-yx+2y^{2}}{2x\left(2x-y\right)} and \frac{x\left(2x-y\right)}{2x\left(2x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-yx+2y^{2}-2x^{2}+xy}{2x\left(2x-y\right)}
Do the multiplications in -yx+2y^{2}-x\left(2x-y\right).
\frac{-2x^{2}+2y^{2}}{2x\left(2x-y\right)}
Combine like terms in -yx+2y^{2}-2x^{2}+xy.
\frac{2\left(x-y\right)\left(-x-y\right)}{2x\left(2x-y\right)}
Factor the expressions that are not already factored in \frac{-2x^{2}+2y^{2}}{2x\left(2x-y\right)}.
\frac{\left(x-y\right)\left(-x-y\right)}{x\left(2x-y\right)}
Cancel out 2 in both numerator and denominator.
\frac{\left(x-y\right)\left(-x-y\right)}{2x^{2}-xy}
Expand x\left(2x-y\right).
\frac{-x^{2}-xy+yx+y^{2}}{2x^{2}-xy}
Apply the distributive property by multiplying each term of x-y by each term of -x-y.
\frac{-x^{2}+y^{2}}{2x^{2}-xy}
Combine -xy and yx to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}