Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3x-a\right)\left(3x-a\right)}{\left(3x+a\right)\left(3x-a\right)}+\frac{\left(3x+a\right)\left(3x+a\right)}{\left(3x+a\right)\left(3x-a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+a and 3x-a is \left(3x+a\right)\left(3x-a\right). Multiply \frac{3x-a}{3x+a} times \frac{3x-a}{3x-a}. Multiply \frac{3x+a}{3x-a} times \frac{3x+a}{3x+a}.
\frac{\left(3x-a\right)\left(3x-a\right)+\left(3x+a\right)\left(3x+a\right)}{\left(3x+a\right)\left(3x-a\right)}
Since \frac{\left(3x-a\right)\left(3x-a\right)}{\left(3x+a\right)\left(3x-a\right)} and \frac{\left(3x+a\right)\left(3x+a\right)}{\left(3x+a\right)\left(3x-a\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}-3xa-3xa+a^{2}+9x^{2}+3xa+3xa+a^{2}}{\left(3x+a\right)\left(3x-a\right)}
Do the multiplications in \left(3x-a\right)\left(3x-a\right)+\left(3x+a\right)\left(3x+a\right).
\frac{18x^{2}+2a^{2}}{\left(3x+a\right)\left(3x-a\right)}
Combine like terms in 9x^{2}-3xa-3xa+a^{2}+9x^{2}+3xa+3xa+a^{2}.
\frac{18x^{2}+2a^{2}}{9x^{2}-a^{2}}
Expand \left(3x+a\right)\left(3x-a\right).
\frac{\left(3x-a\right)\left(3x-a\right)}{\left(3x+a\right)\left(3x-a\right)}+\frac{\left(3x+a\right)\left(3x+a\right)}{\left(3x+a\right)\left(3x-a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x+a and 3x-a is \left(3x+a\right)\left(3x-a\right). Multiply \frac{3x-a}{3x+a} times \frac{3x-a}{3x-a}. Multiply \frac{3x+a}{3x-a} times \frac{3x+a}{3x+a}.
\frac{\left(3x-a\right)\left(3x-a\right)+\left(3x+a\right)\left(3x+a\right)}{\left(3x+a\right)\left(3x-a\right)}
Since \frac{\left(3x-a\right)\left(3x-a\right)}{\left(3x+a\right)\left(3x-a\right)} and \frac{\left(3x+a\right)\left(3x+a\right)}{\left(3x+a\right)\left(3x-a\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}-3xa-3xa+a^{2}+9x^{2}+3xa+3xa+a^{2}}{\left(3x+a\right)\left(3x-a\right)}
Do the multiplications in \left(3x-a\right)\left(3x-a\right)+\left(3x+a\right)\left(3x+a\right).
\frac{18x^{2}+2a^{2}}{\left(3x+a\right)\left(3x-a\right)}
Combine like terms in 9x^{2}-3xa-3xa+a^{2}+9x^{2}+3xa+3xa+a^{2}.
\frac{18x^{2}+2a^{2}}{9x^{2}-a^{2}}
Expand \left(3x+a\right)\left(3x-a\right).