Solve for x
x=-\frac{13}{19}\approx -0.684210526
Graph
Share
Copied to clipboard
3\left(3x+5\right)=2\left(1-5x\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
9x+15=2\left(1-5x\right)
Use the distributive property to multiply 3 by 3x+5.
9x+15=2-10x
Use the distributive property to multiply 2 by 1-5x.
9x+15+10x=2
Add 10x to both sides.
19x+15=2
Combine 9x and 10x to get 19x.
19x=2-15
Subtract 15 from both sides.
19x=-13
Subtract 15 from 2 to get -13.
x=\frac{-13}{19}
Divide both sides by 19.
x=-\frac{13}{19}
Fraction \frac{-13}{19} can be rewritten as -\frac{13}{19} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}