Solve for x
x = \frac{41}{23} = 1\frac{18}{23} \approx 1.782608696
Graph
Share
Copied to clipboard
14\left(3x+2\right)=13\left(5x-1\right)
Variable x cannot be equal to \frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by 14\left(5x-1\right), the least common multiple of 5x-1,14.
42x+28=13\left(5x-1\right)
Use the distributive property to multiply 14 by 3x+2.
42x+28=65x-13
Use the distributive property to multiply 13 by 5x-1.
42x+28-65x=-13
Subtract 65x from both sides.
-23x+28=-13
Combine 42x and -65x to get -23x.
-23x=-13-28
Subtract 28 from both sides.
-23x=-41
Subtract 28 from -13 to get -41.
x=\frac{-41}{-23}
Divide both sides by -23.
x=\frac{41}{23}
Fraction \frac{-41}{-23} can be simplified to \frac{41}{23} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}