Solve for x
x=\frac{-3\sqrt{3}-9}{2}\approx -7.098076211
Graph
Share
Copied to clipboard
\frac{3x\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\frac{2x\sqrt{3}}{3-1}=\frac{27}{2\sqrt{3}}
Rationalize the denominator of \frac{3x}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{3x\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2x\sqrt{3}}{3-1}=\frac{27}{2\sqrt{3}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3x\left(3-\sqrt{3}\right)}{9-3}-\frac{2x\sqrt{3}}{3-1}=\frac{27}{2\sqrt{3}}
Square 3. Square \sqrt{3}.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}}{3-1}=\frac{27}{2\sqrt{3}}
Subtract 3 from 9 to get 6.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}}{2}=\frac{27}{2\sqrt{3}}
Subtract 1 from 3 to get 2.
\frac{3x\left(3-\sqrt{3}\right)}{6}-x\sqrt{3}=\frac{27}{2\sqrt{3}}
Cancel out 2 and 2.
\frac{3x\left(3-\sqrt{3}\right)}{6}-x\sqrt{3}=\frac{27\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{27}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3x\left(3-\sqrt{3}\right)}{6}-x\sqrt{3}=\frac{27\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{3x\left(3-\sqrt{3}\right)}{6}-x\sqrt{3}=\frac{9\sqrt{3}}{2}
Cancel out 3 in both numerator and denominator.
\frac{9x-3\sqrt{3}x}{6}-x\sqrt{3}=\frac{9\sqrt{3}}{2}
Use the distributive property to multiply 3x by 3-\sqrt{3}.
9x-3\sqrt{3}x-6x\sqrt{3}=3\times 9\sqrt{3}
Multiply both sides of the equation by 6, the least common multiple of 6,2.
-6\sqrt{3}x-3\sqrt{3}x+9x=3\times 9\sqrt{3}
Reorder the terms.
-9\sqrt{3}x+9x=3\times 9\sqrt{3}
Combine -6\sqrt{3}x and -3\sqrt{3}x to get -9\sqrt{3}x.
-9\sqrt{3}x+9x=27\sqrt{3}
Multiply 3 and 9 to get 27.
\left(-9\sqrt{3}+9\right)x=27\sqrt{3}
Combine all terms containing x.
\left(9-9\sqrt{3}\right)x=27\sqrt{3}
The equation is in standard form.
\frac{\left(9-9\sqrt{3}\right)x}{9-9\sqrt{3}}=\frac{27\sqrt{3}}{9-9\sqrt{3}}
Divide both sides by -9\sqrt{3}+9.
x=\frac{27\sqrt{3}}{9-9\sqrt{3}}
Dividing by -9\sqrt{3}+9 undoes the multiplication by -9\sqrt{3}+9.
x=\frac{-3\sqrt{3}-9}{2}
Divide 27\sqrt{3} by -9\sqrt{3}+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}