Solve for x
x\geq -\frac{10}{7}
Graph
Share
Copied to clipboard
2\times 3x-\left(2x+2\right)\leq 18\left(x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 3,6. Since 6 is positive, the inequality direction remains the same.
6x-\left(2x+2\right)\leq 18\left(x+1\right)
Multiply 2 and 3 to get 6.
6x-2x-2\leq 18\left(x+1\right)
To find the opposite of 2x+2, find the opposite of each term.
4x-2\leq 18\left(x+1\right)
Combine 6x and -2x to get 4x.
4x-2\leq 18x+18
Use the distributive property to multiply 18 by x+1.
4x-2-18x\leq 18
Subtract 18x from both sides.
-14x-2\leq 18
Combine 4x and -18x to get -14x.
-14x\leq 18+2
Add 2 to both sides.
-14x\leq 20
Add 18 and 2 to get 20.
x\geq \frac{20}{-14}
Divide both sides by -14. Since -14 is negative, the inequality direction is changed.
x\geq -\frac{10}{7}
Reduce the fraction \frac{20}{-14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}