Solve for x
x<\frac{7}{6}
Graph
Share
Copied to clipboard
6\times 3x-3<12x+4
Multiply both sides of the equation by 12, the least common multiple of 2,4,3. Since 12 is positive, the inequality direction remains the same.
18x-3<12x+4
Multiply 6 and 3 to get 18.
18x-3-12x<4
Subtract 12x from both sides.
6x-3<4
Combine 18x and -12x to get 6x.
6x<4+3
Add 3 to both sides.
6x<7
Add 4 and 3 to get 7.
x<\frac{7}{6}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}