Solve for t
t=-\frac{3}{5}=-0.6
Share
Copied to clipboard
\left(t+3\right)\left(3t-1\right)=\left(t+3\right)\left(3t+1\right)\times 2-\left(3t+1\right)\left(t-3\right)
Variable t cannot be equal to any of the values -3,-\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by \left(t+3\right)\left(3t+1\right), the least common multiple of 3t+1,t+3.
3t^{2}+8t-3=\left(t+3\right)\left(3t+1\right)\times 2-\left(3t+1\right)\left(t-3\right)
Use the distributive property to multiply t+3 by 3t-1 and combine like terms.
3t^{2}+8t-3=\left(3t^{2}+10t+3\right)\times 2-\left(3t+1\right)\left(t-3\right)
Use the distributive property to multiply t+3 by 3t+1 and combine like terms.
3t^{2}+8t-3=6t^{2}+20t+6-\left(3t+1\right)\left(t-3\right)
Use the distributive property to multiply 3t^{2}+10t+3 by 2.
3t^{2}+8t-3=6t^{2}+20t+6-\left(3t^{2}-8t-3\right)
Use the distributive property to multiply 3t+1 by t-3 and combine like terms.
3t^{2}+8t-3=6t^{2}+20t+6-3t^{2}+8t+3
To find the opposite of 3t^{2}-8t-3, find the opposite of each term.
3t^{2}+8t-3=3t^{2}+20t+6+8t+3
Combine 6t^{2} and -3t^{2} to get 3t^{2}.
3t^{2}+8t-3=3t^{2}+28t+6+3
Combine 20t and 8t to get 28t.
3t^{2}+8t-3=3t^{2}+28t+9
Add 6 and 3 to get 9.
3t^{2}+8t-3-3t^{2}=28t+9
Subtract 3t^{2} from both sides.
8t-3=28t+9
Combine 3t^{2} and -3t^{2} to get 0.
8t-3-28t=9
Subtract 28t from both sides.
-20t-3=9
Combine 8t and -28t to get -20t.
-20t=9+3
Add 3 to both sides.
-20t=12
Add 9 and 3 to get 12.
t=\frac{12}{-20}
Divide both sides by -20.
t=-\frac{3}{5}
Reduce the fraction \frac{12}{-20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}