Evaluate
\frac{d}{3}
Differentiate w.r.t. d
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{3\times 3d}{12}-\frac{5d}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 12 is 12. Multiply \frac{3d}{4} times \frac{3}{3}.
\frac{3\times 3d-5d}{12}
Since \frac{3\times 3d}{12} and \frac{5d}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{9d-5d}{12}
Do the multiplications in 3\times 3d-5d.
\frac{4d}{12}
Combine like terms in 9d-5d.
\frac{1}{3}d
Divide 4d by 12 to get \frac{1}{3}d.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{3\times 3d}{12}-\frac{5d}{12})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 12 is 12. Multiply \frac{3d}{4} times \frac{3}{3}.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{3\times 3d-5d}{12})
Since \frac{3\times 3d}{12} and \frac{5d}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{9d-5d}{12})
Do the multiplications in 3\times 3d-5d.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{4d}{12})
Combine like terms in 9d-5d.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{1}{3}d)
Divide 4d by 12 to get \frac{1}{3}d.
\frac{1}{3}d^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{3}d^{0}
Subtract 1 from 1.
\frac{1}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{3}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}