Evaluate
\frac{9+5c-c^{2}}{4-c^{2}}
Expand
\frac{c^{2}-5c-9}{c^{2}-4}
Quiz
Polynomial
\frac{ 3c-5 }{ { c }^{ 2 } -4 } + \frac{ 4 }{ 2-c } - \frac{ 4 }{ c+2 } + \frac{ 1 }{ 1 }
Share
Copied to clipboard
\frac{3c-5}{c^{2}-4}+\frac{4}{2-c}-\frac{4}{c+2}+1
Divide 1 by 1 to get 1.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4}{2-c}-\frac{4}{c+2}+1
Factor c^{2}-4.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and 2-c is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{2-c} times \frac{-\left(c+2\right)}{-\left(c+2\right)}.
\frac{3c-5+4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Since \frac{3c-5}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{3c-5-4c-8}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Do the multiplications in 3c-5+4\left(-1\right)\left(c+2\right).
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Combine like terms in 3c-5-4c-8.
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and c+2 is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{c+2} times \frac{c-2}{c-2}.
\frac{-c-13-4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
Since \frac{-c-13}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-c-13-4c+8}{\left(c-2\right)\left(c+2\right)}+1
Do the multiplications in -c-13-4\left(c-2\right).
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+1
Combine like terms in -c-13-4c+8.
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+\frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}.
\frac{-5c-5+\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
Since \frac{-5c-5}{\left(c-2\right)\left(c+2\right)} and \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{-5c-5+c^{2}+2c-2c-4}{\left(c-2\right)\left(c+2\right)}
Do the multiplications in -5c-5+\left(c-2\right)\left(c+2\right).
\frac{-5c-9+c^{2}}{\left(c-2\right)\left(c+2\right)}
Combine like terms in -5c-5+c^{2}+2c-2c-4.
\frac{-5c-9+c^{2}}{c^{2}-4}
Expand \left(c-2\right)\left(c+2\right).
\frac{3c-5}{c^{2}-4}+\frac{4}{2-c}-\frac{4}{c+2}+1
Divide 1 by 1 to get 1.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4}{2-c}-\frac{4}{c+2}+1
Factor c^{2}-4.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and 2-c is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{2-c} times \frac{-\left(c+2\right)}{-\left(c+2\right)}.
\frac{3c-5+4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Since \frac{3c-5}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{3c-5-4c-8}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Do the multiplications in 3c-5+4\left(-1\right)\left(c+2\right).
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Combine like terms in 3c-5-4c-8.
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and c+2 is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{c+2} times \frac{c-2}{c-2}.
\frac{-c-13-4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
Since \frac{-c-13}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-c-13-4c+8}{\left(c-2\right)\left(c+2\right)}+1
Do the multiplications in -c-13-4\left(c-2\right).
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+1
Combine like terms in -c-13-4c+8.
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+\frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}.
\frac{-5c-5+\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
Since \frac{-5c-5}{\left(c-2\right)\left(c+2\right)} and \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{-5c-5+c^{2}+2c-2c-4}{\left(c-2\right)\left(c+2\right)}
Do the multiplications in -5c-5+\left(c-2\right)\left(c+2\right).
\frac{-5c-9+c^{2}}{\left(c-2\right)\left(c+2\right)}
Combine like terms in -5c-5+c^{2}+2c-2c-4.
\frac{-5c-9+c^{2}}{c^{2}-4}
Expand \left(c-2\right)\left(c+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}