Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3c-5}{c^{2}-4}+\frac{4}{2-c}-\frac{4}{c+2}+1
Divide 1 by 1 to get 1.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4}{2-c}-\frac{4}{c+2}+1
Factor c^{2}-4.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and 2-c is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{2-c} times \frac{-\left(c+2\right)}{-\left(c+2\right)}.
\frac{3c-5+4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Since \frac{3c-5}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{3c-5-4c-8}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Do the multiplications in 3c-5+4\left(-1\right)\left(c+2\right).
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Combine like terms in 3c-5-4c-8.
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and c+2 is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{c+2} times \frac{c-2}{c-2}.
\frac{-c-13-4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
Since \frac{-c-13}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-c-13-4c+8}{\left(c-2\right)\left(c+2\right)}+1
Do the multiplications in -c-13-4\left(c-2\right).
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+1
Combine like terms in -c-13-4c+8.
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+\frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}.
\frac{-5c-5+\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
Since \frac{-5c-5}{\left(c-2\right)\left(c+2\right)} and \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{-5c-5+c^{2}+2c-2c-4}{\left(c-2\right)\left(c+2\right)}
Do the multiplications in -5c-5+\left(c-2\right)\left(c+2\right).
\frac{-5c-9+c^{2}}{\left(c-2\right)\left(c+2\right)}
Combine like terms in -5c-5+c^{2}+2c-2c-4.
\frac{-5c-9+c^{2}}{c^{2}-4}
Expand \left(c-2\right)\left(c+2\right).
\frac{3c-5}{c^{2}-4}+\frac{4}{2-c}-\frac{4}{c+2}+1
Divide 1 by 1 to get 1.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4}{2-c}-\frac{4}{c+2}+1
Factor c^{2}-4.
\frac{3c-5}{\left(c-2\right)\left(c+2\right)}+\frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and 2-c is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{2-c} times \frac{-\left(c+2\right)}{-\left(c+2\right)}.
\frac{3c-5+4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Since \frac{3c-5}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(-1\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{3c-5-4c-8}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Do the multiplications in 3c-5+4\left(-1\right)\left(c+2\right).
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4}{c+2}+1
Combine like terms in 3c-5-4c-8.
\frac{-c-13}{\left(c-2\right)\left(c+2\right)}-\frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+2\right) and c+2 is \left(c-2\right)\left(c+2\right). Multiply \frac{4}{c+2} times \frac{c-2}{c-2}.
\frac{-c-13-4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)}+1
Since \frac{-c-13}{\left(c-2\right)\left(c+2\right)} and \frac{4\left(c-2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-c-13-4c+8}{\left(c-2\right)\left(c+2\right)}+1
Do the multiplications in -c-13-4\left(c-2\right).
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+1
Combine like terms in -c-13-4c+8.
\frac{-5c-5}{\left(c-2\right)\left(c+2\right)}+\frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}.
\frac{-5c-5+\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)}
Since \frac{-5c-5}{\left(c-2\right)\left(c+2\right)} and \frac{\left(c-2\right)\left(c+2\right)}{\left(c-2\right)\left(c+2\right)} have the same denominator, add them by adding their numerators.
\frac{-5c-5+c^{2}+2c-2c-4}{\left(c-2\right)\left(c+2\right)}
Do the multiplications in -5c-5+\left(c-2\right)\left(c+2\right).
\frac{-5c-9+c^{2}}{\left(c-2\right)\left(c+2\right)}
Combine like terms in -5c-5+c^{2}+2c-2c-4.
\frac{-5c-9+c^{2}}{c^{2}-4}
Expand \left(c-2\right)\left(c+2\right).