Solve for b
b=-\frac{5\left(2x+3\right)}{x-18}
x\neq 18\text{ and }x\neq -\frac{3}{2}\text{ and }x\neq 5
Solve for x
x=-\frac{3\left(5-6b\right)}{b+10}
b\neq 0\text{ and }b\neq -10\text{ and }b\neq 5
Graph
Share
Copied to clipboard
\left(x-5\right)\times 3b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Multiply both sides of the equation by \left(x-5\right)\left(2x+3\right), the least common multiple of 2x+3,x-5.
\left(3x-15\right)b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Use the distributive property to multiply x-5 by 3.
3xb-15b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Use the distributive property to multiply 3x-15 by b.
3xb-15b-\left(2xb-2x^{2}+3b-3x\right)=\left(x-5\right)\left(2x+3\right)
Use the distributive property to multiply 2x+3 by b-x.
3xb-15b-2xb+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
To find the opposite of 2xb-2x^{2}+3b-3x, find the opposite of each term.
xb-15b+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
Combine 3xb and -2xb to get xb.
xb-18b+2x^{2}+3x=\left(x-5\right)\left(2x+3\right)
Combine -15b and -3b to get -18b.
xb-18b+2x^{2}+3x=2x^{2}-7x-15
Use the distributive property to multiply x-5 by 2x+3 and combine like terms.
xb-18b+3x=2x^{2}-7x-15-2x^{2}
Subtract 2x^{2} from both sides.
xb-18b+3x=-7x-15
Combine 2x^{2} and -2x^{2} to get 0.
xb-18b=-7x-15-3x
Subtract 3x from both sides.
xb-18b=-10x-15
Combine -7x and -3x to get -10x.
\left(x-18\right)b=-10x-15
Combine all terms containing b.
\frac{\left(x-18\right)b}{x-18}=\frac{-10x-15}{x-18}
Divide both sides by x-18.
b=\frac{-10x-15}{x-18}
Dividing by x-18 undoes the multiplication by x-18.
b=-\frac{5\left(2x+3\right)}{x-18}
Divide -10x-15 by x-18.
\left(x-5\right)\times 3b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Variable x cannot be equal to any of the values -\frac{3}{2},5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(2x+3\right), the least common multiple of 2x+3,x-5.
\left(3x-15\right)b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Use the distributive property to multiply x-5 by 3.
3xb-15b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Use the distributive property to multiply 3x-15 by b.
3xb-15b-\left(2xb-2x^{2}+3b-3x\right)=\left(x-5\right)\left(2x+3\right)
Use the distributive property to multiply 2x+3 by b-x.
3xb-15b-2xb+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
To find the opposite of 2xb-2x^{2}+3b-3x, find the opposite of each term.
xb-15b+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
Combine 3xb and -2xb to get xb.
xb-18b+2x^{2}+3x=\left(x-5\right)\left(2x+3\right)
Combine -15b and -3b to get -18b.
xb-18b+2x^{2}+3x=2x^{2}-7x-15
Use the distributive property to multiply x-5 by 2x+3 and combine like terms.
xb-18b+2x^{2}+3x-2x^{2}=-7x-15
Subtract 2x^{2} from both sides.
xb-18b+3x=-7x-15
Combine 2x^{2} and -2x^{2} to get 0.
xb-18b+3x+7x=-15
Add 7x to both sides.
xb-18b+10x=-15
Combine 3x and 7x to get 10x.
xb+10x=-15+18b
Add 18b to both sides.
\left(b+10\right)x=-15+18b
Combine all terms containing x.
\left(b+10\right)x=18b-15
The equation is in standard form.
\frac{\left(b+10\right)x}{b+10}=\frac{18b-15}{b+10}
Divide both sides by b+10.
x=\frac{18b-15}{b+10}
Dividing by b+10 undoes the multiplication by b+10.
x=\frac{3\left(6b-5\right)}{b+10}
Divide -15+18b by b+10.
x=\frac{3\left(6b-5\right)}{b+10}\text{, }x\neq -\frac{3}{2}\text{ and }x\neq 5
Variable x cannot be equal to any of the values -\frac{3}{2},5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}