Evaluate
\frac{39}{28}\approx 1.392857143
Factor
\frac{3 \cdot 13}{2 ^ {2} \cdot 7} = 1\frac{11}{28} = 1.3928571428571428
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)39}\\\end{array}
Use the 1^{st} digit 3 from dividend 39
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)39}\\\end{array}
Since 3 is less than 28, use the next digit 9 from dividend 39 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)39}\\\end{array}
Use the 2^{nd} digit 9 from dividend 39
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)39}\\\phantom{28)}\underline{\phantom{}28\phantom{}}\\\phantom{28)}11\\\end{array}
Find closest multiple of 28 to 39. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 39 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 28, stop the division. The reminder is 11. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}