Evaluate
\frac{389}{225}\approx 1.728888889
Factor
\frac{389}{3 ^ {2} \cdot 5 ^ {2}} = 1\frac{164}{225} = 1.728888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)389}\\\end{array}
Use the 1^{st} digit 3 from dividend 389
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)389}\\\end{array}
Since 3 is less than 225, use the next digit 8 from dividend 389 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)389}\\\end{array}
Use the 2^{nd} digit 8 from dividend 389
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)389}\\\end{array}
Since 38 is less than 225, use the next digit 9 from dividend 389 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)389}\\\end{array}
Use the 3^{rd} digit 9 from dividend 389
\begin{array}{l}\phantom{225)}001\phantom{6}\\225\overline{)389}\\\phantom{225)}\underline{\phantom{}225\phantom{}}\\\phantom{225)}164\\\end{array}
Find closest multiple of 225 to 389. We see that 1 \times 225 = 225 is the nearest. Now subtract 225 from 389 to get reminder 164. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }164
Since 164 is less than 225, stop the division. The reminder is 164. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}