Solve for x (complex solution)
x=\frac{-5\sqrt{15}i-3}{2}\approx -1.5-9.682458366i
x=\frac{-3+5\sqrt{15}i}{2}\approx -1.5+9.682458366i
Graph
Share
Copied to clipboard
x\left(38-3x\right)=\left(x+4\right)\times 48+x\left(x+4\right)\left(-1\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of 4+x,x.
38x-3x^{2}=\left(x+4\right)\times 48+x\left(x+4\right)\left(-1\right)
Use the distributive property to multiply x by 38-3x.
38x-3x^{2}=48x+192+x\left(x+4\right)\left(-1\right)
Use the distributive property to multiply x+4 by 48.
38x-3x^{2}=48x+192+\left(x^{2}+4x\right)\left(-1\right)
Use the distributive property to multiply x by x+4.
38x-3x^{2}=48x+192-x^{2}-4x
Use the distributive property to multiply x^{2}+4x by -1.
38x-3x^{2}=44x+192-x^{2}
Combine 48x and -4x to get 44x.
38x-3x^{2}-44x=192-x^{2}
Subtract 44x from both sides.
-6x-3x^{2}=192-x^{2}
Combine 38x and -44x to get -6x.
-6x-3x^{2}-192=-x^{2}
Subtract 192 from both sides.
-6x-3x^{2}-192+x^{2}=0
Add x^{2} to both sides.
-6x-2x^{2}-192=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}-6x-192=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\left(-192\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -6 for b, and -192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\left(-192\right)}}{2\left(-2\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+8\left(-192\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-6\right)±\sqrt{36-1536}}{2\left(-2\right)}
Multiply 8 times -192.
x=\frac{-\left(-6\right)±\sqrt{-1500}}{2\left(-2\right)}
Add 36 to -1536.
x=\frac{-\left(-6\right)±10\sqrt{15}i}{2\left(-2\right)}
Take the square root of -1500.
x=\frac{6±10\sqrt{15}i}{2\left(-2\right)}
The opposite of -6 is 6.
x=\frac{6±10\sqrt{15}i}{-4}
Multiply 2 times -2.
x=\frac{6+10\sqrt{15}i}{-4}
Now solve the equation x=\frac{6±10\sqrt{15}i}{-4} when ± is plus. Add 6 to 10i\sqrt{15}.
x=\frac{-5\sqrt{15}i-3}{2}
Divide 6+10i\sqrt{15} by -4.
x=\frac{-10\sqrt{15}i+6}{-4}
Now solve the equation x=\frac{6±10\sqrt{15}i}{-4} when ± is minus. Subtract 10i\sqrt{15} from 6.
x=\frac{-3+5\sqrt{15}i}{2}
Divide 6-10i\sqrt{15} by -4.
x=\frac{-5\sqrt{15}i-3}{2} x=\frac{-3+5\sqrt{15}i}{2}
The equation is now solved.
x\left(38-3x\right)=\left(x+4\right)\times 48+x\left(x+4\right)\left(-1\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of 4+x,x.
38x-3x^{2}=\left(x+4\right)\times 48+x\left(x+4\right)\left(-1\right)
Use the distributive property to multiply x by 38-3x.
38x-3x^{2}=48x+192+x\left(x+4\right)\left(-1\right)
Use the distributive property to multiply x+4 by 48.
38x-3x^{2}=48x+192+\left(x^{2}+4x\right)\left(-1\right)
Use the distributive property to multiply x by x+4.
38x-3x^{2}=48x+192-x^{2}-4x
Use the distributive property to multiply x^{2}+4x by -1.
38x-3x^{2}=44x+192-x^{2}
Combine 48x and -4x to get 44x.
38x-3x^{2}-44x=192-x^{2}
Subtract 44x from both sides.
-6x-3x^{2}=192-x^{2}
Combine 38x and -44x to get -6x.
-6x-3x^{2}+x^{2}=192
Add x^{2} to both sides.
-6x-2x^{2}=192
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}-6x=192
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-6x}{-2}=\frac{192}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{6}{-2}\right)x=\frac{192}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+3x=\frac{192}{-2}
Divide -6 by -2.
x^{2}+3x=-96
Divide 192 by -2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-96+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-96+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{375}{4}
Add -96 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{375}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{375}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{5\sqrt{15}i}{2} x+\frac{3}{2}=-\frac{5\sqrt{15}i}{2}
Simplify.
x=\frac{-3+5\sqrt{15}i}{2} x=\frac{-5\sqrt{15}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}