Evaluate
\frac{3735}{1039}\approx 3.594802695
Factor
\frac{3 ^ {2} \cdot 5 \cdot 83}{1039} = 3\frac{618}{1039} = 3.594802694898941
Share
Copied to clipboard
\begin{array}{l}\phantom{1039)}\phantom{1}\\1039\overline{)3735}\\\end{array}
Use the 1^{st} digit 3 from dividend 3735
\begin{array}{l}\phantom{1039)}0\phantom{2}\\1039\overline{)3735}\\\end{array}
Since 3 is less than 1039, use the next digit 7 from dividend 3735 and add 0 to the quotient
\begin{array}{l}\phantom{1039)}0\phantom{3}\\1039\overline{)3735}\\\end{array}
Use the 2^{nd} digit 7 from dividend 3735
\begin{array}{l}\phantom{1039)}00\phantom{4}\\1039\overline{)3735}\\\end{array}
Since 37 is less than 1039, use the next digit 3 from dividend 3735 and add 0 to the quotient
\begin{array}{l}\phantom{1039)}00\phantom{5}\\1039\overline{)3735}\\\end{array}
Use the 3^{rd} digit 3 from dividend 3735
\begin{array}{l}\phantom{1039)}000\phantom{6}\\1039\overline{)3735}\\\end{array}
Since 373 is less than 1039, use the next digit 5 from dividend 3735 and add 0 to the quotient
\begin{array}{l}\phantom{1039)}000\phantom{7}\\1039\overline{)3735}\\\end{array}
Use the 4^{th} digit 5 from dividend 3735
\begin{array}{l}\phantom{1039)}0003\phantom{8}\\1039\overline{)3735}\\\phantom{1039)}\underline{\phantom{}3117\phantom{}}\\\phantom{1039)9}618\\\end{array}
Find closest multiple of 1039 to 3735. We see that 3 \times 1039 = 3117 is the nearest. Now subtract 3117 from 3735 to get reminder 618. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }618
Since 618 is less than 1039, stop the division. The reminder is 618. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}