Evaluate
\frac{3720080}{531441}\approx 6.999986828
Factor
\frac{2 ^ {4} \cdot 5 \cdot 7 ^ {2} \cdot 13 \cdot 73}{3 ^ {12}} = 6\frac{531434}{531441} = 6.999986828265038
Share
Copied to clipboard
\begin{array}{l}\phantom{531441)}\phantom{1}\\531441\overline{)3720080}\\\end{array}
Use the 1^{st} digit 3 from dividend 3720080
\begin{array}{l}\phantom{531441)}0\phantom{2}\\531441\overline{)3720080}\\\end{array}
Since 3 is less than 531441, use the next digit 7 from dividend 3720080 and add 0 to the quotient
\begin{array}{l}\phantom{531441)}0\phantom{3}\\531441\overline{)3720080}\\\end{array}
Use the 2^{nd} digit 7 from dividend 3720080
\begin{array}{l}\phantom{531441)}00\phantom{4}\\531441\overline{)3720080}\\\end{array}
Since 37 is less than 531441, use the next digit 2 from dividend 3720080 and add 0 to the quotient
\begin{array}{l}\phantom{531441)}00\phantom{5}\\531441\overline{)3720080}\\\end{array}
Use the 3^{rd} digit 2 from dividend 3720080
\begin{array}{l}\phantom{531441)}000\phantom{6}\\531441\overline{)3720080}\\\end{array}
Since 372 is less than 531441, use the next digit 0 from dividend 3720080 and add 0 to the quotient
\begin{array}{l}\phantom{531441)}000\phantom{7}\\531441\overline{)3720080}\\\end{array}
Use the 4^{th} digit 0 from dividend 3720080
\begin{array}{l}\phantom{531441)}0000\phantom{8}\\531441\overline{)3720080}\\\end{array}
Since 3720 is less than 531441, use the next digit 0 from dividend 3720080 and add 0 to the quotient
\begin{array}{l}\phantom{531441)}0000\phantom{9}\\531441\overline{)3720080}\\\end{array}
Use the 5^{th} digit 0 from dividend 3720080
\begin{array}{l}\phantom{531441)}00000\phantom{10}\\531441\overline{)3720080}\\\end{array}
Since 37200 is less than 531441, use the next digit 8 from dividend 3720080 and add 0 to the quotient
\begin{array}{l}\phantom{531441)}00000\phantom{11}\\531441\overline{)3720080}\\\end{array}
Use the 6^{th} digit 8 from dividend 3720080
\begin{array}{l}\phantom{531441)}000000\phantom{12}\\531441\overline{)3720080}\\\end{array}
Since 372008 is less than 531441, use the next digit 0 from dividend 3720080 and add 0 to the quotient
\begin{array}{l}\phantom{531441)}000000\phantom{13}\\531441\overline{)3720080}\\\end{array}
Use the 7^{th} digit 0 from dividend 3720080
\begin{array}{l}\phantom{531441)}0000006\phantom{14}\\531441\overline{)3720080}\\\phantom{531441)}\underline{\phantom{}3188646\phantom{}}\\\phantom{531441)9}531434\\\end{array}
Find closest multiple of 531441 to 3720080. We see that 6 \times 531441 = 3188646 is the nearest. Now subtract 3188646 from 3720080 to get reminder 531434. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }531434
Since 531434 is less than 531441, stop the division. The reminder is 531434. The topmost line 0000006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}