Evaluate
\frac{182}{5}=36.4
Factor
\frac{2 \cdot 7 \cdot 13}{5} = 36\frac{2}{5} = 36.4
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)364}\\\end{array}
Use the 1^{st} digit 3 from dividend 364
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)364}\\\end{array}
Since 3 is less than 10, use the next digit 6 from dividend 364 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)364}\\\end{array}
Use the 2^{nd} digit 6 from dividend 364
\begin{array}{l}\phantom{10)}03\phantom{4}\\10\overline{)364}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}6\\\end{array}
Find closest multiple of 10 to 36. We see that 3 \times 10 = 30 is the nearest. Now subtract 30 from 36 to get reminder 6. Add 3 to quotient.
\begin{array}{l}\phantom{10)}03\phantom{5}\\10\overline{)364}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}64\\\end{array}
Use the 3^{rd} digit 4 from dividend 364
\begin{array}{l}\phantom{10)}036\phantom{6}\\10\overline{)364}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}64\\\phantom{10)}\underline{\phantom{9}60\phantom{}}\\\phantom{10)99}4\\\end{array}
Find closest multiple of 10 to 64. We see that 6 \times 10 = 60 is the nearest. Now subtract 60 from 64 to get reminder 4. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }4
Since 4 is less than 10, stop the division. The reminder is 4. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}