Evaluate
\frac{361}{50}=7.22
Factor
\frac{19 ^ {2}}{2 \cdot 5 ^ {2}} = 7\frac{11}{50} = 7.22
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)361}\\\end{array}
Use the 1^{st} digit 3 from dividend 361
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)361}\\\end{array}
Since 3 is less than 50, use the next digit 6 from dividend 361 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)361}\\\end{array}
Use the 2^{nd} digit 6 from dividend 361
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)361}\\\end{array}
Since 36 is less than 50, use the next digit 1 from dividend 361 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)361}\\\end{array}
Use the 3^{rd} digit 1 from dividend 361
\begin{array}{l}\phantom{50)}007\phantom{6}\\50\overline{)361}\\\phantom{50)}\underline{\phantom{}350\phantom{}}\\\phantom{50)9}11\\\end{array}
Find closest multiple of 50 to 361. We see that 7 \times 50 = 350 is the nearest. Now subtract 350 from 361 to get reminder 11. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }11
Since 11 is less than 50, stop the division. The reminder is 11. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}