Solve for x
x=-18
x=20
Graph
Share
Copied to clipboard
x\times 360-\left(x-2\right)\times 360=2x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
x\times 360-\left(360x-720\right)=2x\left(x-2\right)
Use the distributive property to multiply x-2 by 360.
x\times 360-360x+720=2x\left(x-2\right)
To find the opposite of 360x-720, find the opposite of each term.
720=2x\left(x-2\right)
Combine x\times 360 and -360x to get 0.
720=2x^{2}-4x
Use the distributive property to multiply 2x by x-2.
2x^{2}-4x=720
Swap sides so that all variable terms are on the left hand side.
2x^{2}-4x-720=0
Subtract 720 from both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-720\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-720\right)}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-720\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16+5760}}{2\times 2}
Multiply -8 times -720.
x=\frac{-\left(-4\right)±\sqrt{5776}}{2\times 2}
Add 16 to 5760.
x=\frac{-\left(-4\right)±76}{2\times 2}
Take the square root of 5776.
x=\frac{4±76}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±76}{4}
Multiply 2 times 2.
x=\frac{80}{4}
Now solve the equation x=\frac{4±76}{4} when ± is plus. Add 4 to 76.
x=20
Divide 80 by 4.
x=-\frac{72}{4}
Now solve the equation x=\frac{4±76}{4} when ± is minus. Subtract 76 from 4.
x=-18
Divide -72 by 4.
x=20 x=-18
The equation is now solved.
x\times 360-\left(x-2\right)\times 360=2x\left(x-2\right)
Variable x cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x-2,x.
x\times 360-\left(360x-720\right)=2x\left(x-2\right)
Use the distributive property to multiply x-2 by 360.
x\times 360-360x+720=2x\left(x-2\right)
To find the opposite of 360x-720, find the opposite of each term.
720=2x\left(x-2\right)
Combine x\times 360 and -360x to get 0.
720=2x^{2}-4x
Use the distributive property to multiply 2x by x-2.
2x^{2}-4x=720
Swap sides so that all variable terms are on the left hand side.
\frac{2x^{2}-4x}{2}=\frac{720}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{720}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=\frac{720}{2}
Divide -4 by 2.
x^{2}-2x=360
Divide 720 by 2.
x^{2}-2x+1=360+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=361
Add 360 to 1.
\left(x-1\right)^{2}=361
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{361}
Take the square root of both sides of the equation.
x-1=19 x-1=-19
Simplify.
x=20 x=-18
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}