Evaluate
2
Factor
2
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)360}\\\end{array}
Use the 1^{st} digit 3 from dividend 360
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)360}\\\end{array}
Since 3 is less than 180, use the next digit 6 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)360}\\\end{array}
Use the 2^{nd} digit 6 from dividend 360
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)360}\\\end{array}
Since 36 is less than 180, use the next digit 0 from dividend 360 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)360}\\\end{array}
Use the 3^{rd} digit 0 from dividend 360
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)360}\\\phantom{180)}\underline{\phantom{}360\phantom{}}\\\phantom{180)999}0\\\end{array}
Find closest multiple of 180 to 360. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 360 to get reminder 0. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }0
Since 0 is less than 180, stop the division. The reminder is 0. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}