Solve for y
y=-180
y=180\text{, }x\neq 0
Solve for x (complex solution)
x\neq 0
y=-180\text{ or }y=180
Solve for x
x\neq 0
|y|=180
Share
Copied to clipboard
36\times 36\times 25=yy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 36xy, the least common multiple of xy,36x.
36\times 36\times 25=y^{2}
Multiply y and y to get y^{2}.
1296\times 25=y^{2}
Multiply 36 and 36 to get 1296.
32400=y^{2}
Multiply 1296 and 25 to get 32400.
y^{2}=32400
Swap sides so that all variable terms are on the left hand side.
y=180 y=-180
Take the square root of both sides of the equation.
36\times 36\times 25=yy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 36xy, the least common multiple of xy,36x.
36\times 36\times 25=y^{2}
Multiply y and y to get y^{2}.
1296\times 25=y^{2}
Multiply 36 and 36 to get 1296.
32400=y^{2}
Multiply 1296 and 25 to get 32400.
y^{2}=32400
Swap sides so that all variable terms are on the left hand side.
y^{2}-32400=0
Subtract 32400 from both sides.
y=\frac{0±\sqrt{0^{2}-4\left(-32400\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -32400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-32400\right)}}{2}
Square 0.
y=\frac{0±\sqrt{129600}}{2}
Multiply -4 times -32400.
y=\frac{0±360}{2}
Take the square root of 129600.
y=180
Now solve the equation y=\frac{0±360}{2} when ± is plus. Divide 360 by 2.
y=-180
Now solve the equation y=\frac{0±360}{2} when ± is minus. Divide -360 by 2.
y=180 y=-180
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}