Evaluate
\frac{36}{25}=1.44
Factor
\frac{2 ^ {2} \cdot 3 ^ {2}}{5 ^ {2}} = 1\frac{11}{25} = 1.44
Share
Copied to clipboard
\begin{array}{l}\phantom{25)}\phantom{1}\\25\overline{)36}\\\end{array}
Use the 1^{st} digit 3 from dividend 36
\begin{array}{l}\phantom{25)}0\phantom{2}\\25\overline{)36}\\\end{array}
Since 3 is less than 25, use the next digit 6 from dividend 36 and add 0 to the quotient
\begin{array}{l}\phantom{25)}0\phantom{3}\\25\overline{)36}\\\end{array}
Use the 2^{nd} digit 6 from dividend 36
\begin{array}{l}\phantom{25)}01\phantom{4}\\25\overline{)36}\\\phantom{25)}\underline{\phantom{}25\phantom{}}\\\phantom{25)}11\\\end{array}
Find closest multiple of 25 to 36. We see that 1 \times 25 = 25 is the nearest. Now subtract 25 from 36 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 25, stop the division. The reminder is 11. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}