Solve for x
x = \frac{24}{7} = 3\frac{3}{7} \approx 3.428571429
Graph
Share
Copied to clipboard
-\left(24+x\right)\times 36=\left(x-24\right)\times 48
Variable x cannot be equal to any of the values -24,24 since division by zero is not defined. Multiply both sides of the equation by \left(x-24\right)\left(x+24\right), the least common multiple of 24-x,24+x.
\left(-24-x\right)\times 36=\left(x-24\right)\times 48
To find the opposite of 24+x, find the opposite of each term.
-864-36x=\left(x-24\right)\times 48
Use the distributive property to multiply -24-x by 36.
-864-36x=48x-1152
Use the distributive property to multiply x-24 by 48.
-864-36x-48x=-1152
Subtract 48x from both sides.
-864-84x=-1152
Combine -36x and -48x to get -84x.
-84x=-1152+864
Add 864 to both sides.
-84x=-288
Add -1152 and 864 to get -288.
x=\frac{-288}{-84}
Divide both sides by -84.
x=\frac{24}{7}
Reduce the fraction \frac{-288}{-84} to lowest terms by extracting and canceling out -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}