Solve for x
x = -\frac{33}{20} = -1\frac{13}{20} = -1.65
Graph
Share
Copied to clipboard
35x+2=5\left(11x+7\right)
Variable x cannot be equal to -\frac{7}{11} since division by zero is not defined. Multiply both sides of the equation by 11x+7.
35x+2=55x+35
Use the distributive property to multiply 5 by 11x+7.
35x+2-55x=35
Subtract 55x from both sides.
-20x+2=35
Combine 35x and -55x to get -20x.
-20x=35-2
Subtract 2 from both sides.
-20x=33
Subtract 2 from 35 to get 33.
x=\frac{33}{-20}
Divide both sides by -20.
x=-\frac{33}{20}
Fraction \frac{33}{-20} can be rewritten as -\frac{33}{20} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}