Evaluate
\frac{357}{10}=35.7
Factor
\frac{3 \cdot 7 \cdot 17}{2 \cdot 5} = 35\frac{7}{10} = 35.7
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)357}\\\end{array}
Use the 1^{st} digit 3 from dividend 357
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)357}\\\end{array}
Since 3 is less than 10, use the next digit 5 from dividend 357 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)357}\\\end{array}
Use the 2^{nd} digit 5 from dividend 357
\begin{array}{l}\phantom{10)}03\phantom{4}\\10\overline{)357}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}5\\\end{array}
Find closest multiple of 10 to 35. We see that 3 \times 10 = 30 is the nearest. Now subtract 30 from 35 to get reminder 5. Add 3 to quotient.
\begin{array}{l}\phantom{10)}03\phantom{5}\\10\overline{)357}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}57\\\end{array}
Use the 3^{rd} digit 7 from dividend 357
\begin{array}{l}\phantom{10)}035\phantom{6}\\10\overline{)357}\\\phantom{10)}\underline{\phantom{}30\phantom{9}}\\\phantom{10)9}57\\\phantom{10)}\underline{\phantom{9}50\phantom{}}\\\phantom{10)99}7\\\end{array}
Find closest multiple of 10 to 57. We see that 5 \times 10 = 50 is the nearest. Now subtract 50 from 57 to get reminder 7. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }7
Since 7 is less than 10, stop the division. The reminder is 7. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}