Evaluate
\frac{355}{24}\approx 14.791666667
Factor
\frac{5 \cdot 71}{2 ^ {3} \cdot 3} = 14\frac{19}{24} = 14.791666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)355}\\\end{array}
Use the 1^{st} digit 3 from dividend 355
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)355}\\\end{array}
Since 3 is less than 24, use the next digit 5 from dividend 355 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)355}\\\end{array}
Use the 2^{nd} digit 5 from dividend 355
\begin{array}{l}\phantom{24)}01\phantom{4}\\24\overline{)355}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}11\\\end{array}
Find closest multiple of 24 to 35. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 35 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{24)}01\phantom{5}\\24\overline{)355}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}115\\\end{array}
Use the 3^{rd} digit 5 from dividend 355
\begin{array}{l}\phantom{24)}014\phantom{6}\\24\overline{)355}\\\phantom{24)}\underline{\phantom{}24\phantom{9}}\\\phantom{24)}115\\\phantom{24)}\underline{\phantom{9}96\phantom{}}\\\phantom{24)9}19\\\end{array}
Find closest multiple of 24 to 115. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 115 to get reminder 19. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }19
Since 19 is less than 24, stop the division. The reminder is 19. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}