Evaluate
\frac{71}{36}\approx 1.972222222
Factor
\frac{71}{2 ^ {2} \cdot 3 ^ {2}} = 1\frac{35}{36} = 1.9722222222222223
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)355}\\\end{array}
Use the 1^{st} digit 3 from dividend 355
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)355}\\\end{array}
Since 3 is less than 180, use the next digit 5 from dividend 355 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)355}\\\end{array}
Use the 2^{nd} digit 5 from dividend 355
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)355}\\\end{array}
Since 35 is less than 180, use the next digit 5 from dividend 355 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)355}\\\end{array}
Use the 3^{rd} digit 5 from dividend 355
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)355}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}175\\\end{array}
Find closest multiple of 180 to 355. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 355 to get reminder 175. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }175
Since 175 is less than 180, stop the division. The reminder is 175. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}