Evaluate
\frac{35}{18}\approx 1.944444444
Factor
\frac{5 \cdot 7}{2 \cdot 3 ^ {2}} = 1\frac{17}{18} = 1.9444444444444444
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)350}\\\end{array}
Use the 1^{st} digit 3 from dividend 350
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)350}\\\end{array}
Since 3 is less than 180, use the next digit 5 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)350}\\\end{array}
Use the 2^{nd} digit 5 from dividend 350
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)350}\\\end{array}
Since 35 is less than 180, use the next digit 0 from dividend 350 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)350}\\\end{array}
Use the 3^{rd} digit 0 from dividend 350
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)350}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}170\\\end{array}
Find closest multiple of 180 to 350. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 350 to get reminder 170. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }170
Since 170 is less than 180, stop the division. The reminder is 170. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}