Evaluate
\frac{23}{12}\approx 1.916666667
Factor
\frac{23}{2 ^ {2} \cdot 3} = 1\frac{11}{12} = 1.9166666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)345}\\\end{array}
Use the 1^{st} digit 3 from dividend 345
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)345}\\\end{array}
Since 3 is less than 180, use the next digit 4 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)345}\\\end{array}
Use the 2^{nd} digit 4 from dividend 345
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)345}\\\end{array}
Since 34 is less than 180, use the next digit 5 from dividend 345 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)345}\\\end{array}
Use the 3^{rd} digit 5 from dividend 345
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)345}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}165\\\end{array}
Find closest multiple of 180 to 345. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 345 to get reminder 165. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }165
Since 165 is less than 180, stop the division. The reminder is 165. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}