Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{340\left(3-\frac{34+1}{17}\right)}{120\left(5+\frac{1}{3}\right)}
Multiply 2 and 17 to get 34.
\frac{340\left(3-\frac{35}{17}\right)}{120\left(5+\frac{1}{3}\right)}
Add 34 and 1 to get 35.
\frac{340\left(\frac{51}{17}-\frac{35}{17}\right)}{120\left(5+\frac{1}{3}\right)}
Convert 3 to fraction \frac{51}{17}.
\frac{340\times \frac{51-35}{17}}{120\left(5+\frac{1}{3}\right)}
Since \frac{51}{17} and \frac{35}{17} have the same denominator, subtract them by subtracting their numerators.
\frac{340\times \frac{16}{17}}{120\left(5+\frac{1}{3}\right)}
Subtract 35 from 51 to get 16.
\frac{\frac{340\times 16}{17}}{120\left(5+\frac{1}{3}\right)}
Express 340\times \frac{16}{17} as a single fraction.
\frac{\frac{5440}{17}}{120\left(5+\frac{1}{3}\right)}
Multiply 340 and 16 to get 5440.
\frac{320}{120\left(5+\frac{1}{3}\right)}
Divide 5440 by 17 to get 320.
\frac{320}{120\left(\frac{15}{3}+\frac{1}{3}\right)}
Convert 5 to fraction \frac{15}{3}.
\frac{320}{120\times \frac{15+1}{3}}
Since \frac{15}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{320}{120\times \frac{16}{3}}
Add 15 and 1 to get 16.
\frac{320}{\frac{120\times 16}{3}}
Express 120\times \frac{16}{3} as a single fraction.
\frac{320}{\frac{1920}{3}}
Multiply 120 and 16 to get 1920.
\frac{320}{640}
Divide 1920 by 3 to get 640.
\frac{1}{2}
Reduce the fraction \frac{320}{640} to lowest terms by extracting and canceling out 320.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}