Evaluate
\frac{338121}{97}\approx 3485.783505155
Factor
\frac{3 ^ {3} \cdot 7 \cdot 1789}{97} = 3485\frac{76}{97} = 3485.783505154639
Share
Copied to clipboard
\begin{array}{l}\phantom{97)}\phantom{1}\\97\overline{)338121}\\\end{array}
Use the 1^{st} digit 3 from dividend 338121
\begin{array}{l}\phantom{97)}0\phantom{2}\\97\overline{)338121}\\\end{array}
Since 3 is less than 97, use the next digit 3 from dividend 338121 and add 0 to the quotient
\begin{array}{l}\phantom{97)}0\phantom{3}\\97\overline{)338121}\\\end{array}
Use the 2^{nd} digit 3 from dividend 338121
\begin{array}{l}\phantom{97)}00\phantom{4}\\97\overline{)338121}\\\end{array}
Since 33 is less than 97, use the next digit 8 from dividend 338121 and add 0 to the quotient
\begin{array}{l}\phantom{97)}00\phantom{5}\\97\overline{)338121}\\\end{array}
Use the 3^{rd} digit 8 from dividend 338121
\begin{array}{l}\phantom{97)}003\phantom{6}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}47\\\end{array}
Find closest multiple of 97 to 338. We see that 3 \times 97 = 291 is the nearest. Now subtract 291 from 338 to get reminder 47. Add 3 to quotient.
\begin{array}{l}\phantom{97)}003\phantom{7}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}471\\\end{array}
Use the 4^{th} digit 1 from dividend 338121
\begin{array}{l}\phantom{97)}0034\phantom{8}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}471\\\phantom{97)}\underline{\phantom{9}388\phantom{99}}\\\phantom{97)99}83\\\end{array}
Find closest multiple of 97 to 471. We see that 4 \times 97 = 388 is the nearest. Now subtract 388 from 471 to get reminder 83. Add 4 to quotient.
\begin{array}{l}\phantom{97)}0034\phantom{9}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}471\\\phantom{97)}\underline{\phantom{9}388\phantom{99}}\\\phantom{97)99}832\\\end{array}
Use the 5^{th} digit 2 from dividend 338121
\begin{array}{l}\phantom{97)}00348\phantom{10}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}471\\\phantom{97)}\underline{\phantom{9}388\phantom{99}}\\\phantom{97)99}832\\\phantom{97)}\underline{\phantom{99}776\phantom{9}}\\\phantom{97)999}56\\\end{array}
Find closest multiple of 97 to 832. We see that 8 \times 97 = 776 is the nearest. Now subtract 776 from 832 to get reminder 56. Add 8 to quotient.
\begin{array}{l}\phantom{97)}00348\phantom{11}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}471\\\phantom{97)}\underline{\phantom{9}388\phantom{99}}\\\phantom{97)99}832\\\phantom{97)}\underline{\phantom{99}776\phantom{9}}\\\phantom{97)999}561\\\end{array}
Use the 6^{th} digit 1 from dividend 338121
\begin{array}{l}\phantom{97)}003485\phantom{12}\\97\overline{)338121}\\\phantom{97)}\underline{\phantom{}291\phantom{999}}\\\phantom{97)9}471\\\phantom{97)}\underline{\phantom{9}388\phantom{99}}\\\phantom{97)99}832\\\phantom{97)}\underline{\phantom{99}776\phantom{9}}\\\phantom{97)999}561\\\phantom{97)}\underline{\phantom{999}485\phantom{}}\\\phantom{97)9999}76\\\end{array}
Find closest multiple of 97 to 561. We see that 5 \times 97 = 485 is the nearest. Now subtract 485 from 561 to get reminder 76. Add 5 to quotient.
\text{Quotient: }3485 \text{Reminder: }76
Since 76 is less than 97, stop the division. The reminder is 76. The topmost line 003485 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3485.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}