Evaluate
\frac{67}{36}\approx 1.861111111
Factor
\frac{67}{2 ^ {2} \cdot 3 ^ {2}} = 1\frac{31}{36} = 1.8611111111111112
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)335}\\\end{array}
Use the 1^{st} digit 3 from dividend 335
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)335}\\\end{array}
Since 3 is less than 180, use the next digit 3 from dividend 335 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)335}\\\end{array}
Use the 2^{nd} digit 3 from dividend 335
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)335}\\\end{array}
Since 33 is less than 180, use the next digit 5 from dividend 335 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)335}\\\end{array}
Use the 3^{rd} digit 5 from dividend 335
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)335}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}155\\\end{array}
Find closest multiple of 180 to 335. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 335 to get reminder 155. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }155
Since 155 is less than 180, stop the division. The reminder is 155. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}