Evaluate
\frac{3323}{365}\approx 9.104109589
Factor
\frac{3323}{5 \cdot 73} = 9\frac{38}{365} = 9.104109589041096
Share
Copied to clipboard
\begin{array}{l}\phantom{365)}\phantom{1}\\365\overline{)3323}\\\end{array}
Use the 1^{st} digit 3 from dividend 3323
\begin{array}{l}\phantom{365)}0\phantom{2}\\365\overline{)3323}\\\end{array}
Since 3 is less than 365, use the next digit 3 from dividend 3323 and add 0 to the quotient
\begin{array}{l}\phantom{365)}0\phantom{3}\\365\overline{)3323}\\\end{array}
Use the 2^{nd} digit 3 from dividend 3323
\begin{array}{l}\phantom{365)}00\phantom{4}\\365\overline{)3323}\\\end{array}
Since 33 is less than 365, use the next digit 2 from dividend 3323 and add 0 to the quotient
\begin{array}{l}\phantom{365)}00\phantom{5}\\365\overline{)3323}\\\end{array}
Use the 3^{rd} digit 2 from dividend 3323
\begin{array}{l}\phantom{365)}000\phantom{6}\\365\overline{)3323}\\\end{array}
Since 332 is less than 365, use the next digit 3 from dividend 3323 and add 0 to the quotient
\begin{array}{l}\phantom{365)}000\phantom{7}\\365\overline{)3323}\\\end{array}
Use the 4^{th} digit 3 from dividend 3323
\begin{array}{l}\phantom{365)}0009\phantom{8}\\365\overline{)3323}\\\phantom{365)}\underline{\phantom{}3285\phantom{}}\\\phantom{365)99}38\\\end{array}
Find closest multiple of 365 to 3323. We see that 9 \times 365 = 3285 is the nearest. Now subtract 3285 from 3323 to get reminder 38. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }38
Since 38 is less than 365, stop the division. The reminder is 38. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}