Evaluate
\frac{110}{61}\approx 1.803278689
Factor
\frac{2 \cdot 5 \cdot 11}{61} = 1\frac{49}{61} = 1.8032786885245902
Share
Copied to clipboard
\begin{array}{l}\phantom{183)}\phantom{1}\\183\overline{)330}\\\end{array}
Use the 1^{st} digit 3 from dividend 330
\begin{array}{l}\phantom{183)}0\phantom{2}\\183\overline{)330}\\\end{array}
Since 3 is less than 183, use the next digit 3 from dividend 330 and add 0 to the quotient
\begin{array}{l}\phantom{183)}0\phantom{3}\\183\overline{)330}\\\end{array}
Use the 2^{nd} digit 3 from dividend 330
\begin{array}{l}\phantom{183)}00\phantom{4}\\183\overline{)330}\\\end{array}
Since 33 is less than 183, use the next digit 0 from dividend 330 and add 0 to the quotient
\begin{array}{l}\phantom{183)}00\phantom{5}\\183\overline{)330}\\\end{array}
Use the 3^{rd} digit 0 from dividend 330
\begin{array}{l}\phantom{183)}001\phantom{6}\\183\overline{)330}\\\phantom{183)}\underline{\phantom{}183\phantom{}}\\\phantom{183)}147\\\end{array}
Find closest multiple of 183 to 330. We see that 1 \times 183 = 183 is the nearest. Now subtract 183 from 330 to get reminder 147. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }147
Since 147 is less than 183, stop the division. The reminder is 147. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}