Evaluate
\frac{11}{6}\approx 1.833333333
Factor
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)330}\\\end{array}
Use the 1^{st} digit 3 from dividend 330
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)330}\\\end{array}
Since 3 is less than 180, use the next digit 3 from dividend 330 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)330}\\\end{array}
Use the 2^{nd} digit 3 from dividend 330
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)330}\\\end{array}
Since 33 is less than 180, use the next digit 0 from dividend 330 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)330}\\\end{array}
Use the 3^{rd} digit 0 from dividend 330
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)330}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}150\\\end{array}
Find closest multiple of 180 to 330. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 330 to get reminder 150. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }150
Since 150 is less than 180, stop the division. The reminder is 150. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}