Evaluate
\frac{16}{9}\approx 1.777777778
Factor
\frac{2 ^ {4}}{3 ^ {2}} = 1\frac{7}{9} = 1.7777777777777777
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)320}\\\end{array}
Use the 1^{st} digit 3 from dividend 320
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)320}\\\end{array}
Since 3 is less than 180, use the next digit 2 from dividend 320 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)320}\\\end{array}
Use the 2^{nd} digit 2 from dividend 320
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)320}\\\end{array}
Since 32 is less than 180, use the next digit 0 from dividend 320 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)320}\\\end{array}
Use the 3^{rd} digit 0 from dividend 320
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)320}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}140\\\end{array}
Find closest multiple of 180 to 320. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 320 to get reminder 140. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }140
Since 140 is less than 180, stop the division. The reminder is 140. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}