Solve for x
x = \frac{25}{12} = 2\frac{1}{12} \approx 2.083333333
Graph
Share
Copied to clipboard
x\times \frac{32}{\frac{50}{3}}=4
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\times 32\times \frac{3}{50}=4
Divide 32 by \frac{50}{3} by multiplying 32 by the reciprocal of \frac{50}{3}.
x\times \frac{32\times 3}{50}=4
Express 32\times \frac{3}{50} as a single fraction.
x\times \frac{96}{50}=4
Multiply 32 and 3 to get 96.
x\times \frac{48}{25}=4
Reduce the fraction \frac{96}{50} to lowest terms by extracting and canceling out 2.
x=4\times \frac{25}{48}
Multiply both sides by \frac{25}{48}, the reciprocal of \frac{48}{25}.
x=\frac{4\times 25}{48}
Express 4\times \frac{25}{48} as a single fraction.
x=\frac{100}{48}
Multiply 4 and 25 to get 100.
x=\frac{25}{12}
Reduce the fraction \frac{100}{48} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}