Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)315}\\\end{array}
Use the 1^{st} digit 3 from dividend 315
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)315}\\\end{array}
Since 3 is less than 21, use the next digit 1 from dividend 315 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)315}\\\end{array}
Use the 2^{nd} digit 1 from dividend 315
\begin{array}{l}\phantom{21)}01\phantom{4}\\21\overline{)315}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}10\\\end{array}
Find closest multiple of 21 to 31. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 31 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{21)}01\phantom{5}\\21\overline{)315}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}105\\\end{array}
Use the 3^{rd} digit 5 from dividend 315
\begin{array}{l}\phantom{21)}015\phantom{6}\\21\overline{)315}\\\phantom{21)}\underline{\phantom{}21\phantom{9}}\\\phantom{21)}105\\\phantom{21)}\underline{\phantom{}105\phantom{}}\\\phantom{21)999}0\\\end{array}
Find closest multiple of 21 to 105. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 105 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 21, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}