Evaluate
\frac{6241}{36}\approx 173.361111111
Factor
\frac{79 ^ {2}}{2 ^ {2} \cdot 3 ^ {2}} = 173\frac{13}{36} = 173.36111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)31205}\\\end{array}
Use the 1^{st} digit 3 from dividend 31205
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)31205}\\\end{array}
Since 3 is less than 180, use the next digit 1 from dividend 31205 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)31205}\\\end{array}
Use the 2^{nd} digit 1 from dividend 31205
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)31205}\\\end{array}
Since 31 is less than 180, use the next digit 2 from dividend 31205 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)31205}\\\end{array}
Use the 3^{rd} digit 2 from dividend 31205
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)31205}\\\phantom{180)}\underline{\phantom{}180\phantom{99}}\\\phantom{180)}132\\\end{array}
Find closest multiple of 180 to 312. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 312 to get reminder 132. Add 1 to quotient.
\begin{array}{l}\phantom{180)}001\phantom{7}\\180\overline{)31205}\\\phantom{180)}\underline{\phantom{}180\phantom{99}}\\\phantom{180)}1320\\\end{array}
Use the 4^{th} digit 0 from dividend 31205
\begin{array}{l}\phantom{180)}0017\phantom{8}\\180\overline{)31205}\\\phantom{180)}\underline{\phantom{}180\phantom{99}}\\\phantom{180)}1320\\\phantom{180)}\underline{\phantom{}1260\phantom{9}}\\\phantom{180)99}60\\\end{array}
Find closest multiple of 180 to 1320. We see that 7 \times 180 = 1260 is the nearest. Now subtract 1260 from 1320 to get reminder 60. Add 7 to quotient.
\begin{array}{l}\phantom{180)}0017\phantom{9}\\180\overline{)31205}\\\phantom{180)}\underline{\phantom{}180\phantom{99}}\\\phantom{180)}1320\\\phantom{180)}\underline{\phantom{}1260\phantom{9}}\\\phantom{180)99}605\\\end{array}
Use the 5^{th} digit 5 from dividend 31205
\begin{array}{l}\phantom{180)}00173\phantom{10}\\180\overline{)31205}\\\phantom{180)}\underline{\phantom{}180\phantom{99}}\\\phantom{180)}1320\\\phantom{180)}\underline{\phantom{}1260\phantom{9}}\\\phantom{180)99}605\\\phantom{180)}\underline{\phantom{99}540\phantom{}}\\\phantom{180)999}65\\\end{array}
Find closest multiple of 180 to 605. We see that 3 \times 180 = 540 is the nearest. Now subtract 540 from 605 to get reminder 65. Add 3 to quotient.
\text{Quotient: }173 \text{Reminder: }65
Since 65 is less than 180, stop the division. The reminder is 65. The topmost line 00173 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 173.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}