Evaluate
\frac{311}{20}=15.55
Factor
\frac{311}{2 ^ {2} \cdot 5} = 15\frac{11}{20} = 15.55
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)311}\\\end{array}
Use the 1^{st} digit 3 from dividend 311
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)311}\\\end{array}
Since 3 is less than 20, use the next digit 1 from dividend 311 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)311}\\\end{array}
Use the 2^{nd} digit 1 from dividend 311
\begin{array}{l}\phantom{20)}01\phantom{4}\\20\overline{)311}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}11\\\end{array}
Find closest multiple of 20 to 31. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 31 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{20)}01\phantom{5}\\20\overline{)311}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}111\\\end{array}
Use the 3^{rd} digit 1 from dividend 311
\begin{array}{l}\phantom{20)}015\phantom{6}\\20\overline{)311}\\\phantom{20)}\underline{\phantom{}20\phantom{9}}\\\phantom{20)}111\\\phantom{20)}\underline{\phantom{}100\phantom{}}\\\phantom{20)9}11\\\end{array}
Find closest multiple of 20 to 111. We see that 5 \times 20 = 100 is the nearest. Now subtract 100 from 111 to get reminder 11. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }11
Since 11 is less than 20, stop the division. The reminder is 11. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}