Evaluate
\frac{31000000}{11}\approx 2818181.818181818
Factor
\frac{2 ^ {6} \cdot 5 ^ {6} \cdot 31}{11} = 2818181\frac{9}{11} = 2818181.8181818184
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)31000000}\\\end{array}
Use the 1^{st} digit 3 from dividend 31000000
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)31000000}\\\end{array}
Since 3 is less than 11, use the next digit 1 from dividend 31000000 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)31000000}\\\end{array}
Use the 2^{nd} digit 1 from dividend 31000000
\begin{array}{l}\phantom{11)}02\phantom{4}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}9\\\end{array}
Find closest multiple of 11 to 31. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 31 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{11)}02\phantom{5}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 31000000
\begin{array}{l}\phantom{11)}028\phantom{6}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}2\\\end{array}
Find closest multiple of 11 to 90. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 90 to get reminder 2. Add 8 to quotient.
\begin{array}{l}\phantom{11)}028\phantom{7}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\end{array}
Use the 4^{th} digit 0 from dividend 31000000
\begin{array}{l}\phantom{11)}0281\phantom{8}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}9\\\end{array}
Find closest multiple of 11 to 20. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 20 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{11)}0281\phantom{9}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\end{array}
Use the 5^{th} digit 0 from dividend 31000000
\begin{array}{l}\phantom{11)}02818\phantom{10}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}2\\\end{array}
Find closest multiple of 11 to 90. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 90 to get reminder 2. Add 8 to quotient.
\begin{array}{l}\phantom{11)}02818\phantom{11}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}20\\\end{array}
Use the 6^{th} digit 0 from dividend 31000000
\begin{array}{l}\phantom{11)}028181\phantom{12}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}20\\\phantom{11)}\underline{\phantom{9999}11\phantom{99}}\\\phantom{11)99999}9\\\end{array}
Find closest multiple of 11 to 20. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 20 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{11)}028181\phantom{13}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}20\\\phantom{11)}\underline{\phantom{9999}11\phantom{99}}\\\phantom{11)99999}90\\\end{array}
Use the 7^{th} digit 0 from dividend 31000000
\begin{array}{l}\phantom{11)}0281818\phantom{14}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}20\\\phantom{11)}\underline{\phantom{9999}11\phantom{99}}\\\phantom{11)99999}90\\\phantom{11)}\underline{\phantom{99999}88\phantom{9}}\\\phantom{11)999999}2\\\end{array}
Find closest multiple of 11 to 90. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 90 to get reminder 2. Add 8 to quotient.
\begin{array}{l}\phantom{11)}0281818\phantom{15}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}20\\\phantom{11)}\underline{\phantom{9999}11\phantom{99}}\\\phantom{11)99999}90\\\phantom{11)}\underline{\phantom{99999}88\phantom{9}}\\\phantom{11)999999}20\\\end{array}
Use the 8^{th} digit 0 from dividend 31000000
\begin{array}{l}\phantom{11)}02818181\phantom{16}\\11\overline{)31000000}\\\phantom{11)}\underline{\phantom{}22\phantom{999999}}\\\phantom{11)9}90\\\phantom{11)}\underline{\phantom{9}88\phantom{99999}}\\\phantom{11)99}20\\\phantom{11)}\underline{\phantom{99}11\phantom{9999}}\\\phantom{11)999}90\\\phantom{11)}\underline{\phantom{999}88\phantom{999}}\\\phantom{11)9999}20\\\phantom{11)}\underline{\phantom{9999}11\phantom{99}}\\\phantom{11)99999}90\\\phantom{11)}\underline{\phantom{99999}88\phantom{9}}\\\phantom{11)999999}20\\\phantom{11)}\underline{\phantom{999999}11\phantom{}}\\\phantom{11)9999999}9\\\end{array}
Find closest multiple of 11 to 20. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 20 to get reminder 9. Add 1 to quotient.
\text{Quotient: }2818181 \text{Reminder: }9
Since 9 is less than 11, stop the division. The reminder is 9. The topmost line 02818181 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2818181.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}