Evaluate
\frac{61}{36}\approx 1.694444444
Factor
\frac{61}{2 ^ {2} \cdot 3 ^ {2}} = 1\frac{25}{36} = 1.6944444444444444
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)305}\\\end{array}
Use the 1^{st} digit 3 from dividend 305
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)305}\\\end{array}
Since 3 is less than 180, use the next digit 0 from dividend 305 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)305}\\\end{array}
Use the 2^{nd} digit 0 from dividend 305
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)305}\\\end{array}
Since 30 is less than 180, use the next digit 5 from dividend 305 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)305}\\\end{array}
Use the 3^{rd} digit 5 from dividend 305
\begin{array}{l}\phantom{180)}001\phantom{6}\\180\overline{)305}\\\phantom{180)}\underline{\phantom{}180\phantom{}}\\\phantom{180)}125\\\end{array}
Find closest multiple of 180 to 305. We see that 1 \times 180 = 180 is the nearest. Now subtract 180 from 305 to get reminder 125. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }125
Since 125 is less than 180, stop the division. The reminder is 125. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}