Evaluate
\frac{301}{248}\approx 1.213709677
Factor
\frac{7 \cdot 43}{2 ^ {3} \cdot 31} = 1\frac{53}{248} = 1.2137096774193548
Share
Copied to clipboard
\begin{array}{l}\phantom{248)}\phantom{1}\\248\overline{)301}\\\end{array}
Use the 1^{st} digit 3 from dividend 301
\begin{array}{l}\phantom{248)}0\phantom{2}\\248\overline{)301}\\\end{array}
Since 3 is less than 248, use the next digit 0 from dividend 301 and add 0 to the quotient
\begin{array}{l}\phantom{248)}0\phantom{3}\\248\overline{)301}\\\end{array}
Use the 2^{nd} digit 0 from dividend 301
\begin{array}{l}\phantom{248)}00\phantom{4}\\248\overline{)301}\\\end{array}
Since 30 is less than 248, use the next digit 1 from dividend 301 and add 0 to the quotient
\begin{array}{l}\phantom{248)}00\phantom{5}\\248\overline{)301}\\\end{array}
Use the 3^{rd} digit 1 from dividend 301
\begin{array}{l}\phantom{248)}001\phantom{6}\\248\overline{)301}\\\phantom{248)}\underline{\phantom{}248\phantom{}}\\\phantom{248)9}53\\\end{array}
Find closest multiple of 248 to 301. We see that 1 \times 248 = 248 is the nearest. Now subtract 248 from 301 to get reminder 53. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }53
Since 53 is less than 248, stop the division. The reminder is 53. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}