Solve for x
x = \frac{3900}{181} = 21\frac{99}{181} \approx 21.546961326
Graph
Share
Copied to clipboard
156\left(3000-x\times 120\right)-13\left(3000-x\times 10\right)=12\left(x\times 120-x\times 10\right)
Multiply both sides of the equation by 1560, the least common multiple of 10,120,130.
156\left(3000-x\times 120\right)-13\left(3000-x\times 10\right)=12\times 110x
Combine x\times 120 and -x\times 10 to get 110x.
156\left(3000-x\times 120\right)-13\left(3000-x\times 10\right)=1320x
Multiply 12 and 110 to get 1320.
156\left(3000-x\times 120\right)-13\left(3000-x\times 10\right)-1320x=0
Subtract 1320x from both sides.
156\left(3000-120x\right)-13\left(3000-x\times 10\right)-1320x=0
Multiply -1 and 120 to get -120.
468000-18720x-13\left(3000-x\times 10\right)-1320x=0
Use the distributive property to multiply 156 by 3000-120x.
468000-18720x-13\left(3000-10x\right)-1320x=0
Multiply -1 and 10 to get -10.
468000-18720x-39000+130x-1320x=0
Use the distributive property to multiply -13 by 3000-10x.
429000-18720x+130x-1320x=0
Subtract 39000 from 468000 to get 429000.
429000-18590x-1320x=0
Combine -18720x and 130x to get -18590x.
429000-19910x=0
Combine -18590x and -1320x to get -19910x.
-19910x=-429000
Subtract 429000 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-429000}{-19910}
Divide both sides by -19910.
x=\frac{3900}{181}
Reduce the fraction \frac{-429000}{-19910} to lowest terms by extracting and canceling out -110.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}