Evaluate
\frac{69072647}{3250000}\approx 21.253122154
Factor
\frac{7 \cdot 9867521}{13 \cdot 2 ^ {4} \cdot 5 ^ {6}} = 21\frac{822647}{3250000} = 21.253122153846153
Share
Copied to clipboard
\frac{3000-2785.68}{10}-\frac{3000-23.214\times 120}{120}-\frac{23.21412-23.214\times 10}{130}
Multiply 23.214 and 120 to get 2785.68.
\frac{214.32}{10}-\frac{3000-23.214\times 120}{120}-\frac{23.21412-23.214\times 10}{130}
Subtract 2785.68 from 3000 to get 214.32.
\frac{21432}{1000}-\frac{3000-23.214\times 120}{120}-\frac{23.21412-23.214\times 10}{130}
Expand \frac{214.32}{10} by multiplying both numerator and the denominator by 100.
\frac{2679}{125}-\frac{3000-23.214\times 120}{120}-\frac{23.21412-23.214\times 10}{130}
Reduce the fraction \frac{21432}{1000} to lowest terms by extracting and canceling out 8.
\frac{2679}{125}-\frac{3000-2785.68}{120}-\frac{23.21412-23.214\times 10}{130}
Multiply 23.214 and 120 to get 2785.68.
\frac{2679}{125}-\frac{214.32}{120}-\frac{23.21412-23.214\times 10}{130}
Subtract 2785.68 from 3000 to get 214.32.
\frac{2679}{125}-\frac{21432}{12000}-\frac{23.21412-23.214\times 10}{130}
Expand \frac{214.32}{120} by multiplying both numerator and the denominator by 100.
\frac{2679}{125}-\frac{893}{500}-\frac{23.21412-23.214\times 10}{130}
Reduce the fraction \frac{21432}{12000} to lowest terms by extracting and canceling out 24.
\frac{10716}{500}-\frac{893}{500}-\frac{23.21412-23.214\times 10}{130}
Least common multiple of 125 and 500 is 500. Convert \frac{2679}{125} and \frac{893}{500} to fractions with denominator 500.
\frac{10716-893}{500}-\frac{23.21412-23.214\times 10}{130}
Since \frac{10716}{500} and \frac{893}{500} have the same denominator, subtract them by subtracting their numerators.
\frac{9823}{500}-\frac{23.21412-23.214\times 10}{130}
Subtract 893 from 10716 to get 9823.
\frac{9823}{500}-\frac{23.21412-232.14}{130}
Multiply 23.214 and 10 to get 232.14.
\frac{9823}{500}-\frac{-208.92588}{130}
Subtract 232.14 from 23.21412 to get -208.92588.
\frac{9823}{500}-\frac{-20892588}{13000000}
Expand \frac{-208.92588}{130} by multiplying both numerator and the denominator by 100000.
\frac{9823}{500}-\left(-\frac{5223147}{3250000}\right)
Reduce the fraction \frac{-20892588}{13000000} to lowest terms by extracting and canceling out 4.
\frac{9823}{500}+\frac{5223147}{3250000}
The opposite of -\frac{5223147}{3250000} is \frac{5223147}{3250000}.
\frac{63849500}{3250000}+\frac{5223147}{3250000}
Least common multiple of 500 and 3250000 is 3250000. Convert \frac{9823}{500} and \frac{5223147}{3250000} to fractions with denominator 3250000.
\frac{63849500+5223147}{3250000}
Since \frac{63849500}{3250000} and \frac{5223147}{3250000} have the same denominator, add them by adding their numerators.
\frac{69072647}{3250000}
Add 63849500 and 5223147 to get 69072647.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}