Evaluate
\frac{300}{61}\approx 4.918032787
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{61} = 4\frac{56}{61} = 4.918032786885246
Share
Copied to clipboard
\begin{array}{l}\phantom{61)}\phantom{1}\\61\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{61)}0\phantom{2}\\61\overline{)300}\\\end{array}
Since 3 is less than 61, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{61)}0\phantom{3}\\61\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{61)}00\phantom{4}\\61\overline{)300}\\\end{array}
Since 30 is less than 61, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{61)}00\phantom{5}\\61\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{61)}004\phantom{6}\\61\overline{)300}\\\phantom{61)}\underline{\phantom{}244\phantom{}}\\\phantom{61)9}56\\\end{array}
Find closest multiple of 61 to 300. We see that 4 \times 61 = 244 is the nearest. Now subtract 244 from 300 to get reminder 56. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }56
Since 56 is less than 61, stop the division. The reminder is 56. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}