Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)300}\\\end{array}
Use the 1^{st} digit 3 from dividend 300
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)300}\\\end{array}
Since 3 is less than 225, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)300}\\\end{array}
Use the 2^{nd} digit 0 from dividend 300
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)300}\\\end{array}
Since 30 is less than 225, use the next digit 0 from dividend 300 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)300}\\\end{array}
Use the 3^{rd} digit 0 from dividend 300
\begin{array}{l}\phantom{225)}001\phantom{6}\\225\overline{)300}\\\phantom{225)}\underline{\phantom{}225\phantom{}}\\\phantom{225)9}75\\\end{array}
Find closest multiple of 225 to 300. We see that 1 \times 225 = 225 is the nearest. Now subtract 225 from 300 to get reminder 75. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }75
Since 75 is less than 225, stop the division. The reminder is 75. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}