Solve for x
x = \frac{87}{2} = 43\frac{1}{2} = 43.5
Graph
Share
Copied to clipboard
\left(45-x\right)\left(30-44\right)=\left(x-40\right)\left(44-50\right)
Variable x cannot be equal to any of the values 40,45 since division by zero is not defined. Multiply both sides of the equation by \left(x-45\right)\left(x-40\right), the least common multiple of 40-x,x-45.
\left(45-x\right)\left(-14\right)=\left(x-40\right)\left(44-50\right)
Subtract 44 from 30 to get -14.
-630+14x=\left(x-40\right)\left(44-50\right)
Use the distributive property to multiply 45-x by -14.
-630+14x=\left(x-40\right)\left(-6\right)
Subtract 50 from 44 to get -6.
-630+14x=-6x+240
Use the distributive property to multiply x-40 by -6.
-630+14x+6x=240
Add 6x to both sides.
-630+20x=240
Combine 14x and 6x to get 20x.
20x=240+630
Add 630 to both sides.
20x=870
Add 240 and 630 to get 870.
x=\frac{870}{20}
Divide both sides by 20.
x=\frac{87}{2}
Reduce the fraction \frac{870}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}